

PNP Darlington High Power Silicon Transistor

Qualified per MIL-PRF-19500/623

DESCRIPTION

This high power PNP transistor is rated at 12 amps and is military qualified up to the JANTXV level for high reliability applications. This TO-254AA low-profile design offers flexible mounting options.

FEATURES

Important: For the latest information, visit our website http://www.microsemi.com.

• JEDEC registered 2N7371.

- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/623. (See <u>part nomenclature</u> for all available options.)
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- High power operation.
- Flexible, low-profile TO-254AA package

MAXIMUM RATINGS @ $T_c = +25$ °C unless otherwise noted.

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T_J and T_{STG}	-65 to +200	°C
Thermal Resistance Junction-to-Case	Rejc	1.5	°C/W
Collector-Base Voltage	V _{CBO}	-100	V
Collector-Emitter Voltage	V _{CEO}	-100	V
Emitter-Base Voltage	V _{EBO}	-5.0	V
Total Power Dissipation (see Figure 1)	Pτ	100	W
Base Current	Iв	-0.2	А
Collector Current	Ιc	-12	А

MSC – Lawrence 6 Lake Street,

Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

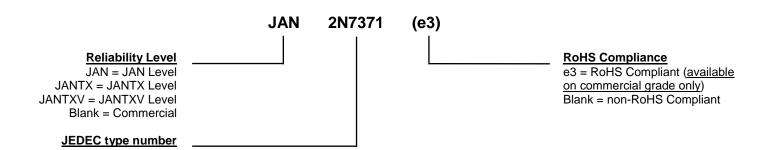
Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

<u>Qualified Levels:</u> JAN, JANTX, and JANTXV

TO-254AA Package


T4-LDS-0318, Rev. 1 (9/16/13)

Microsemi.

MECHANICAL and PACKAGING

- CASE: Nickel plated CRS steel
- TERMINALS: Ceramic feed-though, hot solder dip, Ni plated Alloy 52, copper core. RoHS compliant pure tin dip is available for commercial versions only.
- MARKING: Part number, date code, and polarity symbol
- POLARITY: See <u>Schematic</u> on last page
- WEIGHT: Approximately 6.5 grams
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS				
Symbol	Definition				
Ι _Β	Base current: The value of the dc current into the base terminal.				
Ι _C	Collector current: The value of the dc current into the collector terminal.				
Ι _Ε	Emitter current: The value of the dc current into the emitter terminal.				
Tc	Case temperature: The temperature measured at a specified location on the case of a device.				
V _{CB}	Collector-base voltage: The dc voltage between the collector and the base.				
V _{CBO}	Collector-base voltage, base open: The voltage between the collector and base terminals when the emitter terminal is open-circuited.				
Vcc	Collector-supply voltage: The supply voltage applied to a circuit connected to the collector.				
V _{CE}	Collector-emitter voltage: The dc voltage between the collector and the emitter.				
V _{CEO}	Collector-emitter voltage, base open: The voltage between the collector and the emitter terminals when the base terminal is open-circuited.				
V _{EB}	Emitter-base voltage: The dc voltage between the emitter and the base				
V _{EBO}	Emitter-base voltage, collector open: The voltage between the emitter and base terminals with the collector terminal open-circuited.				

Characteristics	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage $I_{C} = -100 \text{ mA}$	V _{(BR)CEO}	-100		V
Collector-Emitter Cutoff Current V _{CE} = -50 V	I _{CEO}		-1.0	mA
Collector-Emitter Cutoff Current $V_{CE} = -100 \text{ V}, \text{ V}_{BE} = 1.5 \text{ V}$ $V_{CE} = -100 \text{ V}, \text{ V}_{BE} = 1.5 \text{ V}, \text{ T}_{A} = +150 ^{\circ}\text{C}$	I _{CEX}		-20 -1.0	μA mA
Emitter-Base Cutoff Current V _{EB} = -5.0 V	I _{EBO}		-2.0	mA

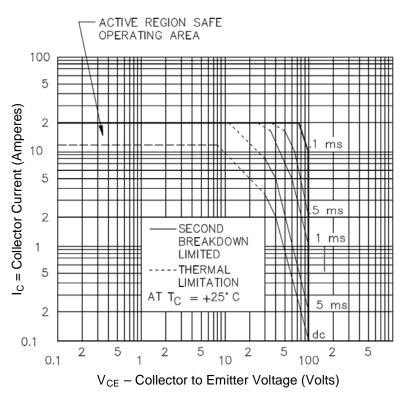
ON CHARACTERISTICS

Forward-Current Transfer Ratio $I_{C} = -6.0 \text{ A}, V_{CE} = -3.0 \text{ V}$ $I_{C} = -12.0 \text{ A}, V_{CE} = -3.0 \text{ V}$ $I_{C} = -6.0 \text{ A}, V_{CE} = -3.0 \text{ V}, T_{A} = +150 \text{ °C}$	h _{FE}	1,000 150 300	18,000	
Collector-Emitter Saturation Voltage $I_{C} = -12 \text{ A}, I_{B} = -120 \text{ mA}$	V _{CE(sat)}		-3.0	V
Base-Emitter Saturation Voltage $I_{C} = -12 \text{ A}, I_{B} = -120 \text{ mA}$	V _{BE(sat)}		-4.0	V

DYNAMIC CHARACTERISTICS

Magnitude of Common Emitter Small-Signal Short-Circuit				
Forward Current Transfer Ratio	h _{fe}	10	250	
$I_{C} = -5 \text{ A}, V_{CE} = -3.0 \text{ V}, f = 1 \text{ MHz}$	l' te l	10	250	

ELECTRICAL CHARACTERISTICS @ $T_c = 25$ °C unless otherwise noted. (continued)


SWITCHING CHARACTERISTICS

Turn-On Time			
$V_{CC} = -30 \text{ V}, I_C = -12 \text{ A}; I_{B1} = -120 \text{ mA}$	t _{on}	2.0	μS
Turn-Off Time			
$V_{CC} = -30 \text{ V}, I_C = -12 \text{ A}; I_{B1} = I_{B2} = -120 \text{ mA}$	t _{off}	10	μS

SAFE OPERATING AREA (See figure below and <u>MIL-STD-750,Test Method 3053</u>)

DC Tests T_{C} = +25 °C, t ≥ 1 second, 1 Cycle Test 1 V_{CE} = -8.3 V, I_C = -12 A Test 2 V_{CE} = -30 V, I_C = -3.3 A Test 3 V_{CE} = -90 V, I_C = -150 mA

* Pulse test: Pulse width 300 μ sec, duty cycle \leq 2%.

Safe Operating Area

GRAPHS

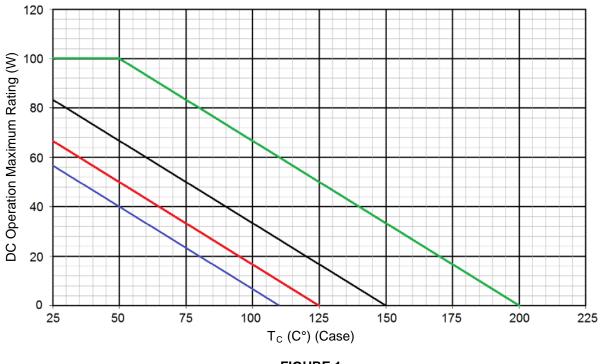


FIGURE 1 Temperature-Power Derating Graph

NOTES:

- All devices are capable of operating at ≤ T_J specified on this curve. Any parallel line to this curve will intersect the appropriate power for the desired maximum T_J allowed.
- Derate design curve constrained by the maximum junction temperature (T_J ≤ +200°C) and power rating specified. (See <u>Maximum</u> <u>Ratings</u>.)
- 3. Derate design curve chosen at $T_J \le +150^{\circ}$ C, where the maximum temperature of electrical test is performed.
- 4. Derate design curves chosen at $T_J \le +125^{\circ}$ C, and $+110^{\circ}$ C to show power rating where most users want to limit T_J in their application.

GRAPHS (continued)

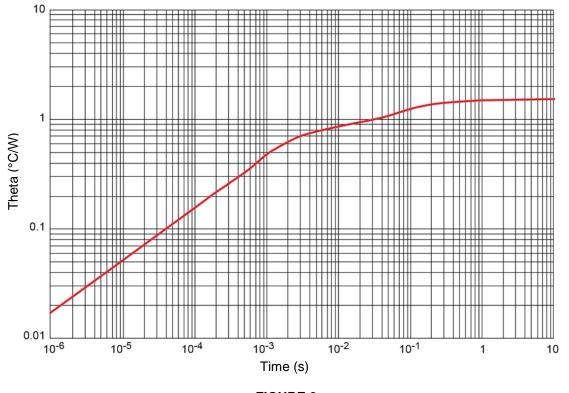
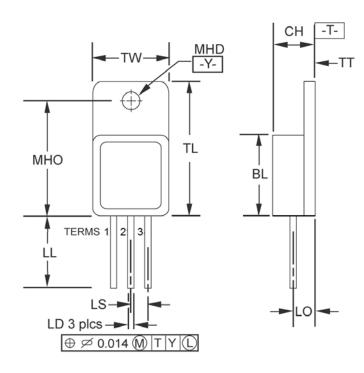
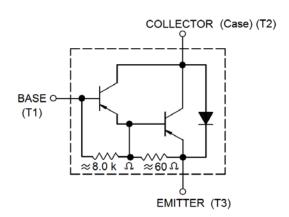



FIGURE 2 Thermal Impedance Graph

PACKAGE DIMENSIONS



	Dimensions				
Ltr	Inch		Millimeters		
	Min	Max	Min	Max	
BL	0.535	0.545	13.59	13.84	
СН	0.249	0.260	6.32	6.60	
LD	0.035	0.045	0.89	1.14	
LL	0.510	0.570	12.95	14.48	
LO	0.150 BSC		3.81 BSC		
LS	0.150 BSC		3.81 BSC		
MHD	0.139	0.149	3.53 3.78		
МНО	0.665	0.685	16.89	17.40	
TL	0.790	0.800	20.07 20.3		
TT	0.040	0.050	1.02 1.27		
TW	0.535	0.545	13.59	13.84	
Term 1	Base				
Term 2	Collector				
Term 3	Emitter				

NOTES:

- 1. Dimensions are in inches. Millimeters are given for information only.
- 2. All terminals are isolated from case.
- 3. Protrusion of ceramic eyelets included in dimension LL.
- 4. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

SCHEMATIC

